Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 591(1): 292-303, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421669

RESUMO

TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Evolução Molecular , Mamíferos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos
2.
Dev Genes Evol ; 226(4): 297-315, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27116603

RESUMO

The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas Musculares/genética , Proteínas Nucleares/química , Domínios Proteicos , Fatores de Transcrição/genética
3.
Hum Mol Genet ; 24(23): 6687-98, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26362254

RESUMO

Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment.


Assuntos
Tumor de Células da Granulosa/genética , Mutação , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Adolescente , Divisão Celular/genética , Criança , Pré-Escolar , Citocinas , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Tumor de Células da Granulosa/metabolismo , Hormônios , Humanos , Lactente , Recém-Nascido , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/genética
4.
Elife ; 32014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25369636

RESUMO

FOXL2 is a lineage determining transcription factor in the ovary, but its direct targets and modes of action are not fully characterized. In this study, we explore the targets of FOXL2 and five nuclear receptors in murine primary follicular cells. We found that FOXL2 is required for normal gene regulation by steroid receptors, and we show that estrogen receptor beta (ESR2) is the main vector of estradiol signaling in these cells. Moreover, we found that FOXL2 directly modulates Esr2 expression through a newly identified intronic element. Interestingly, we found that FOXL2 repressed the testis-determining gene Sox9 both independently of estrogen signaling and through the activation of ESR2 expression. Altogether, we show that FOXL2 mobilizes estrogen signaling to establish a coherent feed-forward loop repressing Sox9. This sheds a new light on the role of FOXL2 in ovarian maintenance and function.


Assuntos
Estrogênios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Estradiol/farmacologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genoma , Células da Granulosa/efeitos dos fármacos , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
5.
FEBS Lett ; 587(19): 3216-23, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994529

RESUMO

Although the expression of the neuronal apoptosis inhibitory protein (NAIP) gene is considered involved in apoptosis suppression as well as in inflammatory response, the molecular basis of the NAIP gene expression is poorly understood. Here we show that the TEA domain protein 1 (TEAD1) is able to positively activate the transcription of NAIP. We further demonstrate that this regulation is mediated by the presence of the endogenous Yes associated protein (YAP) cofactor, and requires the interaction with YAP. We finally identified an intronic region of the NAIP gene responding to TEAD1/YAP activity, suggesting that regulation of NAIP by TEAD1/YAP is at the transcriptional level.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína Inibidora de Apoptose Neuronal/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , DNA , Proteínas de Ligação a DNA/fisiologia , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/fisiologia , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas de Sinalização YAP
6.
FASEB J ; 27(4): 1330-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23271049

RESUMO

Scalloped (SD) is a transcription factor characterized by a TEA/ATTS DNA binding domain. To activate transcription, SD must interact with its coactivators, including Yorkie (YKI) or Vestigial (VG). YKI is the downstream effector of the Hippo signaling pathway that plays a key role in the control of tissue growth. The core components of this pathway are two kinases, Hippo (HPO) and Warts (WTS), which negatively regulate the activity of the SD/YKI complex, retaining YKI in the cytoplasm. We previously showed that HPO kinase can also reduce SD/VG transcriptional activity in Drosophila S2 cells. We further investigated the relationship between the SD/VG complex and the Hippo pathway. We show here that HPO overexpression suppresses overgrowth induced by SD/VG in vivo during Drosophila development. Using S2 cells, we show that HPO promotes the translocation of SD to the cytoplasm in a CRM1-dependent manner, thereby inhibiting the induction of SD/VG target genes. Using RNAi-mediated depletion of yki and a mutant SD protein unable to interact with YKI, we demonstrate that HPO regulates SD localization independently of YKI. This function requires HPO kinase activity, yet surprisingly, not its downstream effector kinase WTS. Taken together, these observations reveal a new and unexpected role of HPO kinase in the regulation of a transcription factor independently of YKI.


Assuntos
Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Drosophila , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Verrugas/genética , Verrugas/metabolismo , Proteína Exportina 1
7.
PLoS One ; 7(9): e45498, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029054

RESUMO

BACKGROUND: TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway. METHODOLOGY/PRINCIPAL FINDINGS: We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. CONCLUSIONS/SIGNIFICANCE: Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Proteínas Inibidoras de Apoptose/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcrição Gênica , Processamento Alternativo , Linhagem Celular , Epistasia Genética , Células HeLa , Humanos , Isoformas de RNA , Fatores de Transcrição de Domínio TEA
8.
Dev Biol ; 332(2): 258-72, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19500564

RESUMO

The gene vestigial (vg) plays a key role in indirect flight muscle (IFM) development. We show here that vg is controlled by the Notch anti-myogenic signaling pathway in myoblasts and is regulated by a novel 822 bp enhancer during IFM differentiation. Interestingly, this muscle enhancer is activated in developing fibers and in a small number of myoblasts before the fusion of myoblasts with the developing muscle fibers. Moreover, we show that this enhancer is activated by Drosophila Myocyte enhancing factor 2 (MEF2), Scalloped (SD) and VG but repressed by Twist, demonstrating a sensitivity to differentiation in vivo. In vitro experiments reveal that SD can directly bind this enhancer and MEF2 can physically interact with both SD and TWI. Cumulatively, our data reveal the interplay between different myogenic factors responsible for the expression of an enhancer activated during muscle differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Voo Animal , Músculos/embriologia , Músculos/fisiologia , Mioblastos/citologia , Mioblastos/fisiologia , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
9.
Curr Biol ; 18(6): 435-41, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18313299

RESUMO

In Drosophila, SCALLOPED (SD) belongs to a family of evolutionarily conserved proteins characterized by the presence of a TEA/ATTS DNA-binding domain [1, 2]. SD physically interacts with the product of the vestigial (vg) gene, where the dimer functions as a master gene controlling wing formation [3, 4]. The VG-SD dimer activates the transcription of several specific wing genes, including sd and vg themselves [5, 6]. The dimer drives cell-cycle progression by inducing expression of the dE2F1 transcription factor [7], which regulates genes involved in DNA replication and cell-cycle progression. Recently, YORKIE (YKI) was identified as a transcriptional coactivator that is the downstream effector of the Hippo signaling pathway, which controls cell proliferation and apoptosis in Drosophila[8]. We identified SD as a partner for YKI. We show that interaction between YKI and SD increases SD transcriptional activity both ex vivo in Drosophila S2 cells and in vivo in Drosophila wing discs and promotes YKI nuclear localization. We also show that YKI overexpression induces vg and dE2F1 expression and that proliferation induced by YKI or by a dominant-negative form of FAT in wing disc is significantly reduced in a sd hypomorphic mutant context. Contrary to YKI, SD is not required in all imaginal tissues. This indicates that YKI-SD interaction acts in a tissue-specific fashion and that other YKI partners must exist.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Proliferação de Células , Drosophila/crescimento & desenvolvimento , Células HeLa , Humanos , Morfogênese/fisiologia , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
10.
Dev Dyn ; 232(3): 725-32, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15704138

RESUMO

Lipid droplets are the major neutral lipid storage organelles in higher eukaryotes. The PAT domain proteins (Perilipin, ADRP [adipose differentiation related protein], and TIP47 [tail-interacting 47-kDa protein]) are associated with these structures. Perilipin and ADRP are involved in the regulation of lipid storage and metabolism in mammals. Two genes encoding PAT proteins, Drosophila Lipid Storage Droplet 2 Gene (Lsd-2) and Lsd-2, have been identified in Drosophila. Lsd-2 is expressed in fat bodies and in the female germ line and is involved in lipid storage in these tissues. We showed that Lsd-2 is expressed in third-instar wing imaginal discs in Drosophila, with higher levels in the wing pouch, which corresponds to the presumptive wing region of the wing disc. This specific expression pattern is correlated with a high level of neutral lipid accumulation. We also showed that neutral lipid deposition in the wing disc is severely reduced in an Lsd-2 mutant and is increased with Lsd-2 overexpression. Finally, we showed that overexpression of the vestigial (vg) pro-wing gene induces Lsd-2 expression, suggesting that Lsd-2 mediates a vg role during wing formation. Our results suggest that Lsd-2 function is not restricted to tissues directly involved in lipid storage and could play additional roles during development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Genes de Insetos , Metabolismo dos Lipídeos , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Transporte , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Corpo Adiposo/embriologia , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Perilipina-1 , Fosfoproteínas/metabolismo , Asas de Animais/citologia
11.
Genes Cells ; 7(12): 1255-66, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12485165

RESUMO

BACKGROUND: Compartment formation is a developmental process that requires the existence of barriers against intermixing between cell groups. In the Drosophila wing disc, the dorso-ventral (D/V) compartment boundary is defined by the expression of the apterous (ap) selector gene in the dorsal compartment. AP activity is under control of dLMO which destabilizes the formation of the AP-CHIP complex. RESULTS: We report that D/V boundary formation in the wing disc also depends on early expression of vestigial (vg). Our data suggest that vg is already required for wing cell proliferation before D/V compartmentalization. In addition, we show that over-expression of vg can, to some extent, rescue the effect of the absence of ap on D/V boundary formation. Early VG product regulates AP activity by inducing dLMO and thus indirectly regulating ap target genes such as fringe and the PSalpha1 and PSalpha2 integrins. CONCLUSION: Normal cell proliferation is necessary for ap expression at the level of the D/V boundary. This would be mediated by vg, which interacts in a dose-dependent way with ap.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Divisão Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Cadeias alfa de Integrinas , Integrinas/genética , Integrinas/metabolismo , Proteínas com Homeodomínio LIM , Morfogênese , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Nucleares/genética , Fenótipo , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia
12.
Dev Growth Differ ; 38(5): 557-564, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37281251

RESUMO

Suppressor genes of the vestigial phenotype have been isolated in a wild-type population. These suppressors have an effect on different wing mutants and are allele-specific in the case of vestigial. In a vgBG background they produced overgrowth of the imaginal wing disc. They also induce cell death in the wild-type strain and alter the distribution of cell death in the mutant strain. Expression of vestigial is increased in the wing disc only. Hypotheses formed to determine the nature of these suppressors are in favor of a direct interaction between these genes and vestigial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...